If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+62.7974705t=0
a = -16; b = 62.7974705; c = 0;
Δ = b2-4ac
Δ = 62.79747052-4·(-16)·0
Δ = 3943.5223011984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62.7974705)-\sqrt{3943.5223011984}}{2*-16}=\frac{-62.7974705-\sqrt{3943.5223011984}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62.7974705)+\sqrt{3943.5223011984}}{2*-16}=\frac{-62.7974705+\sqrt{3943.5223011984}}{-32} $
| (x+2)/5=-2 | | 9/13=2x-7 | | 5^x-4=25^x-6 | | 286+(x)=360 | | 282+(x)=360 | | 158+73+51+(x)=180 | | 3x-21=x+7 | | 97+38+88+(x)=360 | | 1=8p+9 | | 219+(x)=360 | | 11n+5=60 | | 6n-14=34+n | | 6n-14=34=n | | 11k-4k+k-6k=18 | | a/3=32 | | 53+(x)=90 | | Y=350(1+0.75y | | 83+44+(x)=180 | | 83+44(x)=180 | | 98+(x)=180 | | 16x-10=8x+10 | | 5n-3-n=19 | | 4x+10=16x-10=8x+10 | | 5u(u=4) | | (8x+6)=10x-2 | | 14x=90+9x | | ×+3y=36 | | 5b+4b-6b=18 | | 3×-3×+2y=3 | | 3(2x+-1)+11=56 | | 18s-16s-s-s+3s=15 | | y4=28 |